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Abstract We propose and study a model with glassy behavior. The state space of the model
is given by all triangulations of a sphere with n nodes, half of which are red and half are
blue. Red nodes want to have 5 neighbors while blue ones want 7. Energies of nodes with
other numbers of neighbors are supposed to be positive. The dynamics is that of flipping
the diagonal of two adjacent triangles, with a temperature dependent probability. We show
that this system has an approach to a steady state which is exponentially slow, and show
that the stationary state is unordered. We also study the local energy landscape and show
that it has the hierarchical structure known from spin glasses. Finally, we show that the
evolution can be described as that of a rarefied gas with spontaneous generation of particles
and annihilating collisions.

Keywords Topological dynamics - Glassy behavior - Ergodic properties - Energy
landscape

1 Introduction

Our model of a glass is inspired by an abstraction of a model and its representation found in
[1, 10], see also [8, 9, 15]. Before we introduce our version, and to make contact with this
work, we describe briefly the model of [10]. One starts with a binary mixture of n disks in
the plane, half of them small and the other half large. The small disks have radius o5 = 1
and the large, oy = 1.4. The three pairwise additive interactions are given by purely repulsive
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Fig. 1 (Color online) A Voronoi
tessellation (adapted from [10]).
The interpretation of the figure is
as follows: blue dots correspond
to the positions of the big
particles and red dots to the small
ones. The polygons are white, for
every blue particle in a heptagon
and every red particle in a
pentagon. All hexagons are in
blue-green. There are no other
polygons at this temperature

(T =0.1, see [10]). The blue line
shows the boundary of the
domain, which is extended
periodically beyond

with a, b € {s, £}, ¢ > 0, and r the distance between the centers of the disks. One assumes
the interaction vanishes for r > 2.25(o, + 0},). Taking periodic boundary conditions, and a
relatively tight volume, the authors of [10] found that this system shows the characteristics
of a glass when the temperature is sufficiently low.

The part of the analysis which is of interest for the present study has to do with a geo-
metric representation of configurations of this system. One draws in the plane a point for
the position of the centers of the disks, and proceeds then to use the Voronoi tessellation.
This means that lines are drawn between nearest neighbors in the sample, and their normal
bisectors are then used to draw polygons around each particle. These polygons turn out to
be mostly pentagons around the small particles and heptagons around the large ones, with
a few exceptions as a function of temperature, and by the constraints of Euler’s theorem on
polygonal domains on surfaces. See Fig. 1.

In this paper, we consider a purely topological variant of the above model and show it
has the properties of a glass. The model is basically obtained by considering instead of the
Voronoi tessellation the dual graph, which is a triangulation (of the torus). This triangula-
tion is obtained from Fig. 1 by connecting the centers of the particles normally across the
edges of the Voronoi tessellation. (The dual graph is a triangulation since each edge of the
polygons meets exactly 2 other edges at each of its ends.) The dynamics will be that of flips
(T1-moves, Gross—Varsted-moves), and the energy will be local.

Models of this type have been considered earlier in many papers (those which come
closest to our considerations are e.g., [2, 6, 11], but see also the review [16]) and some of
the results obtained here have been obtained earlier. As far as those models are concerned,
they usually consider one type of particles, with ideally 6 neighbors, while here, we will
consider 2 such types, one preferring to have 5 neighbors and the other 7. This in itself
is a variant, and, not having been aware of the earlier literature, and to make contact with
[1, 10], the study will proceed with this variant. Mutatis mutandis we expect the results and
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considerations to carry over to the 6-fold model, or any other model with a positive cost for
making a defect.!

So what is new here? Our main aim is to provide clean arguments on ergodicity, multi-
plicity of states, and the hierarchical nature of the energy landscape (ultrametric property). It
is interesting to see how this property goes together with the small-world nature of the graph
of possible configurations. (In this “super-graph”, called G below, each node is a state of the
system, and two nodes are linked whenever one can be reached from another by one flip.)
Using this topological analysis, we discover that the main characteristics of such models are
largely independent of the details of the Hamiltonian and also of the nature of what is called
a defect.

To simplify things further, we consider instead a triangulation 7 of the sphere. The sim-
plification is that the genus is 0, and that more is known about the combinatorics of trian-
gulations of the sphere than of the torus. Given n, corresponding to the number of particles
in the original model, we let 7 denote a triangulation of the sphere with n nodes and we
let T, o denote the set of all such triangulations. By this, one means the set of all combina-
torially distinct rooted simplicial 3-polytopes. In particular, a triangulation should not have
any “double edges”. We further refine the definition, by distinguishing 2 types of nodes in
the triangulation: we first number the nodes from 1 to n and then define 2 types of nodes.
Those with even index are the “small particles” and those with odd index the “large” ones.
This means that the triangulation has the same number of large and small nodes (up to a
difference of one). We will also call the two types of nodes two colors.

Definition 1.1 We shall call the odd nodes blue and the even ones red and will refer to the
triangulations as colored triangulations.

Once the colors are assigned, the numbers are again forgotten. The set of all colored
triangulations with n nodes will be called T,. This is our phase space and the dynamics is
mapping points in this phase space to other points.

As in the original model, we introduce an energy E for each triangulation 7 :

E(T)=) di-1*+ ) (d—5) (1.1)

i=odd i=even

where d; is the number of links meeting at node i. Except for the constraint given by Euler,
that >"_, d; = 6n — 12, the lower bound of the energy is obviously E(7) > 0.

Remark 1.2 The choice of energy is not as “universal” as one could wish. In a way, it would
be more adequate to be able to develop a theory which deals with a family of energies, which
all have the property that the minima are at again at 5 and 7, but which should somehow be
independent of the details of how the errors are weighted. For example, one expects similar
results for an energy of the form

E(T) =) (di~=77+2 ) d~5"
i=odd i=even

On the positive side, we will see that the hierarchical structure of the energy landscape in-
deed does not depend on the details of the energies, only on their behavior near the quadratic
minima.

17 thank the referees and several colleagues for pointing out to me this earlier literature of which I was
unaware.
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Fig. 2 The Christmas tree. Two
nodes are at the bottom, the
others (only 4 shown) are in the
stem of the tree

AN\

We next define a dynamics on the set of all triangulations T,, which is inspired by the
motion of the dual to the Voronoi tessellation of the model in [10]:

(1) Choose a link at random.

(2) Consider the two triangles touching that link, say ABC and BCD (having the common
link BC). If the link AD exists in the triangulation go back to (1). (This can happen
when ABCD form a tetrahedron.)

(3) Inprinciple, we want to flip the link BC and replace it by AD, i.e., exchange the triangles
ABC and BCD with ACD and ABD. This operation is called a flip (T1-move in foam
dynamics) [14], or a Gross—Varsted move [12] and it will transform the triangulation 7°
to anew one 7.

(4) If E(7T") < E(7) then perform the flip and continue at (1).

(5) If E(T') > E(T) then perform a flip with probability e #E(T)~E(T) and continue
at (1). This is of course a typical Monte-Carlo step (at inverse temperature f3).

2 Irreducibility

Having defined precisely the algorithm, we first show that the phase space T, is irreducible.

Lemma 2.1 The action described above defines an irreducible Markov process on T, (when
n > 7). This means that any configuration can be reached from any other configuration.

Proof For the case of the uncolored triangulations, T, o, this is a well-known result [14, 20],
see also [5]. In that case, one shows that every triangulation can be transformed by a se-
quence of flips to the “Christmas tree” of Fig. 2. Note that this reduction takes place without
shifting around the nodes of the outermost triangle. A typical sample move to achieve the
reduction of the number of links at the top is shown in Fig. 3.

We next show irreducibility in T,, where the positions of the colors now matter. Since
we can move any triangulation to a Christmas tree, we therefore only need to show that one
can exchange the places of the colors in the Christmas tree. We first show in Fig. 4 how this
is done for any two positions on the stem, with the exception of the two bottom ones. Those
are handled by the flips shown in Fig. 5. Finally, one can “exchange” colors in the outermost
triangle as follows: observe that the “outermost” triangle is arbitrary since one can declare
any triangle of the triangulation of the sphere to be the outermost one. In other words, we
can reduce the question to the preceding ones by declaring a new triangle to be the outermost
one, bring the triangulation to the Christmas tree form and proceeding as before. O

Remark 2.2 One can also show, see [5], that the Markov process defined above is aperiodic,
i.e., some power of the transition matrix has only non-zero entries.
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Fig. 3 (Color online) Reducing the degree at the top of the Christmas tree by 1. Note that the gray regions
can contain any triangulation. The complete Christmas tree is obtained by inductively working “down” from
the top to the bottom, once the top node has been reduced to degree 3. The sequence of events is fop left, top
right, bottom left, and bottom right. The actual flip is done between frame 2 and 3. The other transformations
just move the nodes into place for better visibility

Remark 2.3 Note that the energy of the Christmas tree (with n nodes) is at least (depending
on the distribution of colors)

Epree)>2-T—n—=1))24+m—=3)-5-4>+1-(5-3)2=2n>—31n+ 129,

when n > 8. It is important to note that the Christmas tree is an “expensive” configuration
energy-wise, but very convenient as a topological anchor from which to reach other config-
urations.

3 The Phase Space

In this section, we describe the phase space T, of the system. The possible states of our
system of triangulations with n nodes is the set T, of all possible colored triangulations. The
set T, has, as we will see, a number of elements which grows like C” for some constant C.
It is thus a discrete space with a finite number of states. To describe the dynamics of flipping
in a geometric way, one should view this set as the dynamical graph G, whose nodes are now
the elements of the set T, (not to be confused with the nodes (particles) of any triangulation
T) and two nodes are linked if one can be reached from the other by a flip. (This makes
an undirected graph, since one can flip back and forth.) The reader should note that there
are two graphs in this discussion: each triangulation is a graph with n nodes, and 3n — 6
links (by Euler’s theorem), while the graph G has about C" nodes, and about 3n — 6 links
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Fig. 4 (Color online) Exchanging blue and red in the stem of the Christmas tree by a sequence of moves.
Top to bottom. The actual flips are taking place between frames 1-2, 2-3, 5-6, 6-7. The other transitions are
again just moves for better visibility. Note that the shaded regions may contain arbitrary links, in particular,
parts of the stem of the tree. Therefore, this sequence shows that any two positions in the vertical stem can be
exchanged, except for the bottom 2. Those will be handled in Fig. 5

per node. This last statement follows because in every state of T,, one can choose which of
the 3n — 6 links of the triangulation 7" one wants to flip. However, there will, in general, be
somewhat fewer links which are candidates for flipping, because whenever there is a node
of degree 3 in the triangulation 7 its links can not be flipped (a tetrahedron is unflippable).

In more physical language, comparing with the local degree in Z¢, (which is 2d), one
can say that the “local dimension” of the dynamical graph G is something like O(n), while
the size of the phase space (the number of nodes in G) is O(1)".

Finally, given any two elements in T,, that is, any two triangulations with n nodes, we
will show below that O(n?) flips are sufficient to walk on the graph G from one to the other.
Thus, the diameter of the graph G is at most O(n?) while it has O(1)" vertices. This means
that G has the “small-world” property [21]. It has also small clustering coefficient, since
there are very few triangles in the graph G (it is difficult to get from a triangulation back to
the same triangulation with 3 flips).

In the remainder of this section, we prove these statements. They are well-known for
uncolored graphs, so the only task is to prove them for the colored graphs.

We first state two known results for the set T, o of uncolored triangulations:

Lemma 3.1 [13, 14, 18] The number of elements in T, o is asymptotically

256\"° 3
= . — (3.1
27 166713

The distance between any two uncolored triangulations is at most 6n — 30 flips.
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Fig. 5 (Color online) Exchanging blue and red in the two bottom positions of the Christmas stem. Top to
bottom. The flips occur between frames 2-3, 4-5, and 6-7

For the case of the colored graphs, with 1.4 = npe + ¢ and ¢ € {0, 1}, that is, about equal
number of red and blue nodes, one has

Lemma 3.2 The number of elements in T, is asymptotically bounded above by

o (256)"‘3 3 3.2)
27 1686705’ '

and below by the expression (3.1). The distance between any two colored triangulations in
T, is bounded by

Cin*+C, (3.3)

flips with some universal constants Cy, C;.

Remark 3.3 This result might be compared to glass models on cubes. In that case, one has
also the small world property [3]. However, our model is not “trap”-like, since there are no
very deep holes but rather very narrow corridors, see also Sect. 7.

Proof The lower bound in (3.2) is obvious from Lemma 3.1, since there are certainly more
triangulations with coloring than without. The upper bound follows by observing that there
cannot be more than 2" different colorings of the nodes of any uncolored triangulation (a bet-
ter bound would be 1.3 - 2"1/2/,/mn). To estimate the number of steps needed to connect
two colored triangulations, we reduce the problem to the uncolored one. Starting from an
arbitrary triangulation 7 in T,, we can go to 7' € T, without respecting the colors, by
“passing through the Christmas tree”. This needs at most 6n — 30 flips. However, the colors
in the final position might be wrong and they must be reordered. We do this not at the end,
but when we are at the Christmas tree. Here we use the method described in Figs. 4 and 5.
Each permutation of two neighboring colors can be done by at most 4 flips. Since no color
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Fig. 6 (Color online) A
triangulation of the torus with 64
nodes and energy 0. We show the
64 nodes and the periodic
extension (softer colors)

has to be moved by more than n — 1 positions, and there are n nodes we get the bound (3.3)
as asserted. 0

4 The Energies

Up to now, our discussion has been purely topological. But there is also energy. The shortest
paths (of length at most Cn? 4 C as described in Lemma 3.2) to go from 7 to 7’ are by
no means energetically optimal, and optimal paths are difficult to find. We have already seen
in Remark 2.3 that the Christmas tree has energy @ (n?). The minimal energy of the model
is clearly 0, by (1.1). However, this energy can not be quite reached, because of Euler’s
theorem. We have the following, probably non-optimal result:

Lemma 4.1 For every n = 18 + 12k with k € N, there is a triangulation T in T, (with an
equal number of red and blue nodes) whose energy E(T) is between 6 and 54.

Corollary 4.2 There is a constant C such that for every n there is a triangulation T € T,
(with the number of red and blue nodes differing by at most 1) such that E(T) < C.

Remark 4.3 Note that the statements above are by and large independent of the choice of
the function E, provided it has its local minima at 5 and 7. Of course, the constants will
depend on the details of E but the basic facts will not. What will change, however, is, e.g.,
the highest possible energy. In our case, it is O(n?) but for potentials which grow faster it
will be higher.

Remark 4.4 One can also study triangulations of the torus (where the Euler characteristics
is 0). In that case, it is easy to see, and in fact shown in Fig. 5 of [10], that there is a state of
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energy 0 when n is a multiple of 4. This state is a regular arrangement of nodes of degree 5
and 7 (see Fig. 6). Note that flipping all the links connecting blue nodes in the 2nd column
will exchange blue and red there and will generate another configuration of energy 0. Since
this can be done for all even columns independently, the degeneracy of the ground state of
torus triangulations with n = 4k nodes is at least about Zﬁ, which makes it quite degenerate.
One can play the same game with horizontal rows, but this does not change the square root
behavior of the exponent.

Proof of Lemma 4.1 The proof is by construction. In Fig. 7 we show a triangulation which
has 18 nodes, and energy E between 6 (which seems to be the minimal possible energy) and
54. Note that the shaded triangle has the same number of internal links from its corners than
the outermost triangle (namely 6). Therefore, we can repeat the construction recursively in
the interior triangle by adding another 12 nodes (6 blue and 6 red), i.e., the shaded triangle
will look like the original one. Its 3 black nodes will become red. Therefore, the number of
black dots will not increase, and we see that for k € N there is a triangulation with 18 + 12k
nodes, with energy between 6 and 54, as asserted. The corollary follows immediately: If
n =18 + 12k + ¢ with 0 < £ < 11, we just do the construction for n’ = 18 + 12k nodes
and add the additional £ nodes inside the innermost (black) triangle, and connecting them to
make a triangulation. This subgraph and its connections to the black nodes will increase the
energy by some finite, k-independent amount. 0

Remark 4.5 The bounds of Lemma 4.1 are not optimal. For better values, see also the nu-
merical studies of Sect. 6.

We next give a bound on the degeneracy of the energy levels. Given n, one can ask about
the number N (n, E) of triangulations of T, of energy < E, and of course, one can ask
about their distribution in the limit n — oo. Here, we only have a lower bound on N, which
is certainly not optimal. But this bound will show that for intermediate energies N (n, E)
grows at least like C(E)" as n — oo.

Lemma 4.6 There are constants C, > 1 and E, > 0 such that the following holds. For every
sufficiently large n and every 100 < E < E.n one has the lower bound

N(n,E)>CE. 4.1

Remark 4.7 The inequality (4.1) can also be interpreted by saying that the number of states
with energy en and ¢ < E, is at least

N(n,en) > C;".

This should be compared to the growth rate of the number of triangulations in T, which is
also of the form const”.

Proof We give again a constructive proof, with no attempt to optimality. We begin with
a graph G, of the type of Fig. 7 with m = 18 + 12k nodes. In every triangle of G,, we
may insert a graph H which we now describe. The graph H is of the following form: First
extend the triangle “inward” as shown in the leftmost panel of Fig. 8 (the triangle with the
red point). Then the inner gray triangle is filled with the triangulation of Fig. 7, i.e., with G,.
Finally in the innermost triangle of Fig. 7 we draw a Christmas tree by adding 2 vertices.
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Fig. 7 (Color online) A triangulation 7 with 18 nodes and energy E(7") < 54. The blue nodes have degree 7
and the red ones have degree 5. The black ones have degree 4, which means that the energy of the triangulation
isatleast 6 - (5 — 4)2 =6 and at most 6 - 7 - 4)2 =54

This tree will break the rotation symmetry of Fig. 7. The whole construction adds 20 nodes
to the original graph G,,, for every insertion of H (3 nodes in the first step, another 15 to
place Fig. 7 and 2 more for the tree). Since there are 2m — 4 triangles in the original graph
there can be at most 2m — 5 insertions of H, namely one per original triangle (we do not
insert into the outside of the basic triangle).

Note now that rotating the interior graphs in H as shown in the 3 panels of Fig. 8 will
create a different graph for each rotation of each of the inserted H, except perhaps for one
overall rotation. All these graphs have the same energy. Thus, if there are p insertions of H
there will be 37 graphs with the same energy and the same .

We next give an upper bound on the change of energy when inserting p of these graphs
H. Inserting a triangle as in the left panel of Fig. 8 will increase the degree at each of
the three nodes by 1. Since the original degree was at most 7, the new degree is at most
14 and hence, for every inserted H this contribution can raise the energy by at most some
Ey (=3 (14 — 5)?). (In fact it will be less than that if not all triangles are filled with H’s.)
The energy of each graph H itself is bounded by some other constant E; (= 54 plus the
contribution from the inserted tree). Thus, upon inserting p graphs H the energy will grow
atmostby pE, =p - (Ey+ E)).

Summarizing, we see that when we start with m nodes and insert p graphs H we get 37
graphs of the same energy by rotating the p insertions separately. Furthermore, the order of
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Fig. 8 (Color online) Three configurations, in the interior of an arbitrary triangle, which have the same
energy (the inserted figure being one with three external nodes of same degree and same color). These three
configurations are different unless the interior triangle has 3-fold symmetry

the graph is m + 20p and the energy is less than 54 4+ pE,, where the 54 is the bound of
Lemma 4.1.

One can now rearrange this statement to obtain the claim of Lemma 4.6. Since we started
with m nodes and were able to insert at most 2m — 5 graphs H, each of which adds 20 nodes,
we get the inequalities

p<2m-—35, n=m+20p, E <54+ E)p, N =37,
From this we conclude that the inequalities are satisfied if

(p+35)/2<m=n-20p,
that is if p < 2"’65 which for large n is satisfied for p < n/25. This means that the number
of insertions for which our construction works is bounded by n/25 and the corresponding
energy of such graphs is bounded by 54 + E,p < 54 + E»n /25 < E,n, with E, for example
equal to E,/50 when n is large enough. And in all these cases we have 37 graphs with the
same energy, that is, at least 3¥=3/£2 Introducing the lower bound E > 100, we get (4.1)
and the proof is complete. O

Remark 4.8 One can obtain somewhat less good bounds by inserting directly Christmas
trees into each triangle of G,,,.

5 The Dynamics of Defects

A useful way to view a typical state of low energy is the notion of defects. Let us call defect
any red node whose degree is not 5 and any blue node whose degree is not 7. Thus, the graph
of Fig. 7 has 6 defects. When the energy of a triangulation of n nodes is less than en—which
is quite frequent when n is large, as we saw in Lemma 4.6—then there are very few defects,
since each costs at least one unit of energy. Therefore, at these very low energies it is useful
to view the triangulation as a dilute gas of defects. This approach is quite common, see
e.g., [17].

We next will show that these defects can actually move in our model. Again, this is
illustrated by an example. In Fig. 9, we show a sequence of 3 flips with the property that
after the flips, one node has degree lowered by 1 and a node at distance 2 has degree raised
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Fig. 9 (Color online) Motion of a defect by successive flips (top row, then bottom row, left to right). Shown
is a sequence of moves which lowers the degree by 1 on the top node and raises the degree by one on the
bottom left node, leaving in the end all other degrees intact. Flips take only place between frames 2-3, 4-5,
and 5-6. The color code of the nodes is red for an increase of the degree by 1 and blue for decrease by one.

by one, while all other nodes have the same degrees before and after the flips. It is easy to
see that this mechanism allows one to “move” a defect by 2 steps with a small number of
flips. Of course, by Lemma 2.1 and Lemma 3.2, we already know that this can be done in
O(n?) steps. But what is new here is that the number of steps needed to move the defect by
a distance 2 is independent of the size of the triangulation.

Note that since defects can move, they can actually collide and annihilate each other. In
Sect. 7, we will argue how this fits nicely into a random walk picture, of a gas of annihilating
defects combined with a rate of spontaneous generation of new defects.

6 Numerical Results
6.1 Time Evolution of Energy

We ran several simulations on triangulations of size n = 367, 1096 and 3283. The energy
was defined as in (1.1). All runs have been done starting from a fixed initial configuration,
with fixed temperature. The original triangulation is obtained by starting from a tetrahedron
which is recursively subdivided by the insertion of tetrahedra. Thus, at level £ of recursion
there are 4 + Zle 3’ nodes. Our runs are for levels 5 to 7.

In Fig. 10 we illustrate the typical scenario for the evolution of the energy as a function
of the number of flips, at temperature 7 = 0.175. After a short initial phase, there is a
marked decrease of the energy until it reaches an order of about 100 (for the sizes of our
triangulations). We do not discuss this initial phase here, since it might depend on details of
the model which do not generalize to similar models. See, however, [17]. Then a slow decay
sets in until an equilibrium value is reached.
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Energy as a function of flips (T=0.175)

1e+06 !

— n=367
— n=1096
— n=3283

10000

Energy

100

| | | | |
1
0.01 1 100 10000 1e+06 1e+08

flips/1000

Fig. 10 (Color online) The energy as a function of the number of flips. The vertical scale is energy

The absolute time scales seem proportional to n. So we can produce a first data collapse
by rescaling time by a factor 3283 /n. This is done in Fig. 11.

Glassy slowing down is demonstrated in Fig. 12. Here we concentrate on the phase just
before equilibrium is reached. With very good quality, one finds an exponential slowing
down. The energy behaves like the logarithm of the number of flips. More precisely, before
saturation, we find laws of the form (between 3 - 10® and 3 - 10'° flips):

(E367 — 6)/367 = 0.44958 — 0.0189710g(3283/367 - flips),
(E1096 — 6)/1096 = 0.46169 — 0.019362 10og(3283/1096 - flips), 6.1)
(Exs83 — 6)/3283 =0.44554 — 0.0186521og(flips).
The correlation coefficients of these fits increase from 0.977 to 0.997.
Remark 6.1 The minimal energies we have seen at 7 = 0.175 are summarized in Table 1.
A study of the temperature dependence would be interesting, and should follow easily
from the defect nature of the model. Both the creation rate of defects and the “speed of
motion” will of course depend on the temperature. For a discussion of these issues, see [17].
6.2 Local Minima and the Ultrametric Property
We have also studied the local neighborhood of typical triangulations (at 7 = 0.175). The
results are shown in Fig. 13. The question we answer here is as follows. Take a “typical”

low-energy triangulation and compute for every possible flip starting from this triangula-
tion the change of energy § E which that flip would generate. For a triangulation with n
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Energy per node as function of flips

Q.14 TTTTT T T 11T T T T 71T T T T T
i — n=367,T=0.15
0.12 — — n=367,T=0.175 K
| n=1096, T=0.15 ||
— n=1096, T=0.1675
0.1~ n=1096, T=0.175 H
| n=1096, T=0.2 |
3 n=3283, T=0.175
2 0.08- — n=3283,T=0.175 H
g i n=3283, T=0.225 ||
z n=3283, T=0.25
5 0.06 — —
=
5]
0.04 — —
0.02 — A TR n H% bﬁ
\Qj}#\wﬁ,
Il L1 1] \‘ Il L1 1] \‘ Il L1 1] \‘ Il Il Il L1 1] \‘
1e+08 le+09 le+10 le+11
flips

Fig. 11 (Color online) The data for n = 367, 1096, and 3283 and 1/8 = T as shown in legend. The x-axis
is the logarithm of number of attempted flips, normalized by 3283/n, and the y-axis energy per node after
having subtracted a zero-point energy Eq = 6 from all the energies. Note a certain data collapse for each
temperature 7', independent of size n

Table 1 (Color online) Some states with very low energy which have been found in the simulations. The
numbers indicate the number of nodes of given degree. After the first column we give the counts for the red
nodes (which want to have degree 5) and then for the blue nodes (which want to have degree 7)

n 4insteadof 5 5 6instead of 5  6insteadof 7 7 8 instead of 7 Total energy
367 6 178 0 5 178 0 11

1096 10 536 2 4 544 0 16

3283 8 1629 5 11 1627 3 27

nodes there are in general 3n — 6 possible choices of the edge which is going to be flipped,
as discussed in Sect. 3. The figure shows the number of these flips which change the en-
ergy by 6E = —2,0, ..., 10, averaged over 200-700 states (depending on n). The values
are expressed as probabilities. In fact, the fluctuations between samples are very small and
basically every single sample has the same distribution. Also note that this distribution is
largely independent of the size of the system, except that very rare events are absent in the
smaller triangulations.

In terms of the energy landscape on the graph G of Sect. 3 this means that every point on
G which is a typical glass state is almost a local minimum. In almost 100% of all directions
(flips) leaving a given point, the energy grows by 4, with fewer and fewer directions with
different growth. Only about 0.05% of all directions are energy neutral, and the probability
to find a direction in which the energy decreases is only about one in 1.5 - 10%. This means
that the probability to find a saddle point (increase and decrease of energy possible) for
n = 3282 is only about 0.002. In other words, only about 1 in 500 of the sampled states is
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Final approach to stationarity

— n=367
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Flips / 1000

Fig. 12 (Color online) The energy as a function of the number of flips on approach to equilibrium (at tem-
perature 7 = 0.175. The vertical scale is density of defects, i.e., defects/nodes. The horizontal axis is the
number of flips, renormalized by 3283/n, i.e., the smaller triangulations converge faster than the larger ones.
However, the slope is the same for the 3 cases. We have subtracted 6 from the energies, to take into account
the O point energy (which is at least 6)

not a local minimum, but actually a saddle. One can understand these numbers by observing
that flipping a link in a region where the four affected nodes have the “right” degree (namely,
either 5 or 7, depending on color) will cost 4 units of energy. Since most nodes have this
property in the stationary state, a gain of four is the normal situation. The much rarer other
energy changes are possible if a link is flipped in a region with a defect, and those are very
rare. It should be possible to quantify all this as a function of temperature, i.e., as a function
of the density of defects.

One can push this picture somewhat further and show that the local minima are relatively
deep. Indeed, to study the local neighborhood we looked at all possible movements from
the current state to its 3n — 6 neighbors (or slightly less when there are tetrahedra around).
Note now that the next choice of a link for the next motion will, with high probability, affect
nodes which were not touched in the first move. Therefore, with high probability, there is
another increase of energy by 4 units for this second step. This can go on for many more
flips. For example, if we do another n!~¢ flips, with & > 0, then they will all imply (with
high probability) new nodes, and each such step will increase the energy by 4. Thus, the
local minima are in troughs at least 4n'~¢ deep (with very few directions with less increase).
So the local minima are surrounded by walls at least 4n'~* high, in most directions. Note
that this fact is intimately related to the topology of the graph G.

Thus, the following picture emerges, leading to the familiar ultrametric scenario. Any
state with very few defects is basically a local minimum. Only very well-chosen “exit”
directions from such a state do not increase the energy. Going two steps away from the
original state, the probability of finding an exit without energy increase is approximately
the square of that finding such an exit when doing one step. And this picture will repeat
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Local neighborhood of triangulation
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Fig. 13 (Color online) The neighborhood of typical glassy configurations. See the text for explanations

for a number of o(n) steps, so that each local minimum is surrounded by walls of height
o(n) and exits of probability O(1/n)* without increase of energy in k steps (and probability
O(1/n)** for an energy increase of 4£). Note that these observations depend only on the
short range behavior of the energy function, in our special case, the constant 4, but not on
the large scale growth of, say, (d; — 5)%. One expects that these local minima will become
equilibrium states, and this is how the ultrametric property appears in this model.

6.3 Temporal Correlations

Here we present some measurements of temporal correlations. By this one means that one
compares the triangulation at time ¢ to triangulations at time ¢ 4 ¢ (it is well-known that this
is the right aging approach, see e.g., [3]). The distance D (7, 7") between two triangulations
7T and 77 is defined as the number of (numbered) nodes which have different degrees or
different neighbors.? This measure is mathematically not quite right, since two triangulations
which only differ in a renumbering of the nodes (respecting color) would be considered
equal in T, but unequal here. The advantage of the current definition is that it is very easy to
implement. (A better measure would be the minimum of the distance over all permutations
of the numbering of the nodes, or the shortest distance between 7 and 7”.) These quantities
are illustrated in Figs. 14 and 15.

2More precisely, we represent the triangulations by fixing a certain numbering of nodes, and by enumer-
ating for each node its neighbors in counter clockwise order. When doing comparisons, we compare these
representations, as obtained in the simulations.
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Number of changed nodes
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Fig. 14 (Color online) Number of nodes which differ between time ¢ (in flips) and time ¢ + 108 - dt. The
data are for n =3283 and T = 0.175

6.4 Spatial Correlations

Here, we compare two spatial correlations, one for the regular torus triangulation, and the
other for a state of the triangulation taken towards the end of the run. These correlations are
measured with a technique known from quantum gravity (with dynamical triangulations of
54, see [7]. The correlation function C(r) at distance r is defined as

Zij:dist(i.j):r (di — a_l) (dj - ‘?)
Zij:dist(i,j):r 1 7

Cr)=

where d; is the degree at i, d is the mean degree, and the distance between two nodes i and
J is defined as the minimal number of hops needed to get from i to j. The power spectrum
is then the amplitude of the Fourier transform of this quantity.

In Fig. 16 we show that the power spectrum of the regular triangulation has, as expected,
a peak, while the one for the glassy phase shows no structure at all. The precise data are as
follows: The torus triangulation is regular as described in Remark 4.4, with O energy, and
3600 nodes. The glassy triangulation is a typical state of a simulation done with 3283 nodes,
at temperature 7 = 0.175.

7 A Random Walk Interpretation
Glass models can be classified in largely two different classes, and, at present it is not clear

whether these two classes are the same or are different. The first class can be called the “deep
valley” class. People imagine a landscape with increasingly deep valleys and the random
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Number of unchanged nodes as function of flips
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Fig. 15 (Color online) Number of nodes which are unchanged as a function of 6 = dt/t. The vertical axis
is 3283 — D(ty. to + dt), with g given in the caption and D defined in the text. The data are for n = 3283
and 7' = 0.175. Perfect data collapse would check the scaling relation f(6) = D(ty, tg + 01y)

Power spectra

0.02

—— torus, regular
—— sphere, glassy

0.015

0.01

amplitude

0.005 — —

0 1 2 3 4
frequency

Fig. 16 (Color online) Power spectra for the torus triangulation and a glassy triangulation, corresponding to
the equilibrium at 7' = 0.175
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walk enters them, and, the deeper the valley one finds, the harder it is to get out of the valley
to find eventually an even deeper one. The second class can be called “narrow corridors”
class. Here, the valleys are rather flat, and, while the shortest distance between two points
might be quite short, it might be very difficult to find a path which has a small total variation
in height, going from one configuration to another. The model in [10] and this one seem to
be of this second class.

How should one view our the model at very low temperature? Most odd (blue) nodes will
have a degree 7 while most even (red) ones have degree 5, if the temperature is low enough.
Furthermore, there will be a density of “defects” that is, odd ones of degree different from 7
and even ones of degree different from 5, as seen in Table 1. Experimentally, what happens
is that at low temperature only 6’s and 8’s occur for the odd ones and 4’s and 6’s for the
even ones. We can thus view these defects (which all cost energy 1 each) as a gas of low
density. At a given temperature, 4 defects are usually created by flipping an edge in a region
with no defects (all 4 corners will acquire a “wrong” degree). Two new defects can be
created when one flips a link which connects to only one old defect. The probability of this
happening (per flip) is proportional to exp(—48) (resp. exp(—28)). Thus, 4- (or 2-) tuples
are randomly created at this rate. On the other hand, defects can wander (painfully) through
the triangulations as we have shown above in Sect. 5. When 2 or 4 of them meet they can
annihilate, and the final density of defects as a function of 8 should be obtainable as the
equilibrium between creation and annihilation of these defects. Note that, since annihilation
lowers the energy, this will happen with a rate 1 whenever they meet, while creation happens
with the much smaller rate exp(—4p8).

Remark 7.1 Our discussion of defects differs from that of [1, 10]. In that paper, most parti-
cles live, at low temperature, in a hexagon. Any red particle in a pentagon (or blue particle
in a 7-gon) is then called a glass-defect, while all other cases are called liquid-defects. In
contrast, in our model the natural thing is to have red particles in pentagons and blue ones
in 7-gons, and defects are any coordination numbers different from 5 or 7. In particular,
a hexagon is a defect in our model. Given our earlier discussion, at the temperatures we
consider, all defects which appear in the simulations would correspond to glass-like defects.
The following discussion can the be seen as a variant of [10].

7.1 A Toy Model

One can study the density of defects in a simplified model which is basically exactly solv-
able.? The model is as follows: Take a square lattice (sublattice of Z?) of size N x N with
periodic boundary conditions. Each site of the lattice can be either empty or filled with one
particle. Fix a constant o (this mimics exp(—4p)). The Markov process consists in choosing
at random one of the sites:

1. If it is filled, move the particle randomly in one of the 4 directions to the next site. If the
target site is occupied, the particles annihilate each other. If not, the particle stays at the
new site.

2. If the site is empty, create a new particle there with probability o.

3Yuval Peres and Bernard Derrida kindly explained to me how one discusses such models, and also suggested
the precise law.
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Fig. 17 (Color online) The asymptotic density of walkers for the model of Sect. 7.1 as a function of the
temperature. The theoretical curve is f(0) = ag/2|log(b - 0)|1/2, with a = 0.252 and b = 0.00217

The conjecture is that the equilibrium density of the particles, for N — oo and small o,
should behave like

const.o'/?|logo|'/2. (7.1)
Remark 7.2 We have checked this law for N = 100, with a very good fit (see Fig. 17).

The connection between this model and our model of a glass is almost obvious. The mi-
gration of defects was discussed in Sect. 5, see also Fig. 9. The only difference here is that
moves in the glass model are slower, since perhaps the energy will increase on the way from
a position to the next. But this only changes the time scale of the moves of defects. The
creation of defects takes usually place either in a region where there is no defect nearby, and
then the energy increases by 4, hence the probability of this happening will be exp(—4p8).
But perhaps other such creations will only need energy 2, and this is not covered by the toy
model. The toy model is on a lattice Z> while the defect model is on the triangulation—
not on the set T, of triangulations—since we talk here about motion of defects, viewed as
independent, unless they collide. Therefore, what can be reasoned on Z? transposes to the
triangulation, since both are locally transient. Therefore, we conjecture that for the topo-
logical glass model, the density of defects should behave like (7.1), with ¢ of the form
o =exp(—pC), for some C. We have not been able to verify this in the simulations. For a
mean-field study of such models, see also [4].

Coalescing and annihilating random walks are discussed in various places, see e.g., [19].
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8 Conclusions and Outlook

In this paper, we have discussed a variety of properties of a glass-like model. These prop-
erties show that the glass-like behavior can be obtained without reference to position, but
already in a discrete phase space (given by the graph G of triangulations and their connec-
tions through flips). Furthermore, the energy landscape and its concomitant slowing down of
motion to equilibrium, seem to depend mostly only on the cost of local energy changes, and
are thus universal. The global structure is in fact hard-wired into the graph G. It would be
interesting to see whether the equilibrium states can be mapped back into a physical space,
for example by mapping the triangulation onto the disk in such a way that every point is
away from every other point by at least the same minimal distance r, and to compare the
result to those obtained with classical potentials.
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